Name				
	Astı	ronomy Packet 4		
1) The Solar System formed from a			_ that was disturbed by	
a	and began to		. As the disk of material	began to
	_most of the material collecte	ed in the	due to the force o	f
	As more and more mate	rial collected it b	egan to	up and
more and mo	ore material was pulled in. Ev	entually the tem	perature reached	
and nuclear_	occurred. Th	nis process was k	nown as	Our
solar system	consist ofstar planets _	dwarf planet:	s moons	asteroids
and	comets.			
The Sun rota	tes once every	and r	evolves around the Milk	y once
every	The core	e has a temperat	ure of	and is the
site of		where approxim	ately	tons
of	is converted into		tons of	with
the missing p	oortion turned into	This	s ta	akes
	years to travel form the co	re to the surface	. Above the core the sui	n is separated
into the	and	zones where	heat and light rise thro	ugh
huge	cells to the	comm	only called the solar sur	face. The
temperature	of this layer is approximately	/	. This layer is the locatio	n
	which are areas of cooler	temps caused b	y the strong	field of
the sun. Thes	se occur in a year cycle. Tl	he surface is also	the location of various	forms of solar

seismic activity such as. _____ and _____.

These often result fro	om large plumes known as		if they remain
connected to the sur	face or	if they form large loc	ps. The lower solar
atmosphere is knowr	n as the and	the upper atmosphere is	known as
the	and often is the site of	or C.M.E	.'s. The
temperature in this c	outer layer can reach up to	Hur	nanities main
observatories for sol	ar activity are known as	or	for short.
	/ formed from the cloud aroun	•	
	The pla	nets began as small piec	es of
which became attrac	ted to other clumps of	due to the force of_	and
as they got larger du	e to the force of	As the proto-planets gre	w they collected
more and more mate	erial eventual resulting in a sol	ar system with many sm	all proto-planets
the number was deci	reased as the proto-planets	and	It was
one of these	that resulted in the f	formation of our	when a
proto=planet called _	struck Earth. Af	fter this initial period the	inner planets heavy
elements such as	sunk into the w	hich allows for the creat	ion of these planets
·	The Liquid h20 which would s	shape the inner planets w	ould be delivered
by and	from the outer so	olar system. This would b	pecome known as
the period of		·	

2) The innermost plane	t of the Solar System i	is, it also	o the	Its period
of rotation is	and its period of Re	evolution is	It is loca	ted
away from the sun. The	e surface temperature	ranges from	to	the
widest swing in the sol	ar system. This planet	differs from mos	t the inner planet	s in that most of
its mass consists of its_	with a v	ery thin	and	The
surface is marked by la	rge amounts of	and jagge	d cliffs known as	
Th	ne largest of this crater	r is the		, which
generated the geologic	: features known as		An intere	sting fact about
the craters along the p	oles is that	has been	located in them.	This planet is
also the only other plan	net with a	which allow	s for this kind of v	weather
phenomena:	The p	rimary missions to	o this planet were	
and		missions. Du	e to its	to
the Sun this planet	be viewed	by the Hubble Te	lescope.	
3) The second planet fr	om the Sun is	and is l	ocated away	from the Sun.
It is often referred to a	s	and		by many
ancient societies. Man	y astronomers believe	d it to Earths	albeit a hotto	er version.
When it was first visite	d by the Soviet mission	n's	and it w	as discovered
that that idea was tota	lly In fa	act this planet is a	ctually the solar	
systems wit	h an avg. surface temp	perature of	These horrific o	conditions are
due to a runaway		which	most of the	this
planet This re	esults in an atmospher	ic pressure	times that of Eartl	h. It takes this
planet	to rotate on its axis w	hich it does in a_	mot	tion which is

different from all	the other major plane	ts. It takes this pla	net	to revolve
around the Sun. 1	he atmosphere of Ve	nus consists of prim	narily	
and	which gives t	he sky its yellow-or	ange color. In fa	act this chemical
actually comes do	wn as	_ but it never reach	es the ground d	ue to the high
temperature. The	surface of Venus is co	overed in	and	The
largest of which is	І	n fact it is the high a	amount of	
	that main	tains the thick atm	osphere.	
4) The phases of t	he moon are			
	ne elevated area is cal			
			,	
5) The fourth plan	et from the Sun is	which is lo	ocated	away from the
Sun. It takes	to rotate on its	axis and		to revolve around
the Sun. This plan	et is known as the	due to t	he high amount	of
	in the rocks on its	surface. The atmos	sphere consists o	of
mostly	but is inc	redibly	due to	the low
	this causes the dayti	me sky to appear as	s T	his also causes the
temperature to be	e approximately	at the s	surface. The onl	y really weather
patterns that exist	are massive	which roll	across the plain	s leading to
It	is believed that the si	urface of	was once cov	ered by
evidence for this i	s show in the	end	of	the rocks of the

surface. This	is now locked in	$_{ extstyle }$ at the polar region and underground as
	it is possible that the	of this planet may
contain vast revivers of	The largest	in the solar system exist on
this planet, it is called	and stands	high. The two moons
are and	which are most likely	The current
mission studying this pla	anet is	